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Associative memory based on synchronized firing of spiking neurons
with time-delayed interactions

Masahiko Yoshioka and Masatoshi Shiino
Department of Applied Physics, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo 152, Japan

~Received 28 January 1998; revised manuscript received 7 May 1998!

We study associative memory of a neural network of spiking neurons with time-delayed synaptic interac-
tions incorporating the time taken by an action potential to propagate along the axon. Individual spiking
neurons are described by a set of nonlinear differential equations capable of exhibiting excitability such as that
of Hodgkin-Huxley and FitzHugh neurons. When a simple learning rule of the autocorrelation type based on
random patterns is assumed, memory retrieval is shown to be accompanied by synchronized firing of neurons.
The reduced dynamics with a few degrees of freedom of the network with a finite number of stored patterns is
analytically derived in the limit of infinitely many neurons. The dependence of the appearance of retrieval
states on the distribution of time delay and on the size of refractory period given implicitly in the model is
obtained, showing good agreement between the result of numerical simulations and that obtained from the
reduced dynamics. The behavior of the network with an extensive number of patterns is also investigated and
an approximate analysis is presented to discuss the storage capacity.@S1063-651X~98!09009-6#
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I. INTRODUCTION

Since Hopfield’s work@1# extensive studies have bee
conducted on neural networks of associative memory
means of statistical mechanical theory of spin glasses@2–10#
and some alternatives of it@11–15#. Model neurons have
been mostly taken to be of Ising spin type or of analog n
ron type. They represent states of neuronal activity of fir
and resting for Ising spin neurons, and a graded respons
the mean firing rate for analog neurons. Memory retrie
based on such neurons is expressed as a dynamical flo
one of fixed point type attractors generated correspondin
the stored patterns in a network that has a Lyapunov func
as a result of assuming symmetric couplings between n
rons.

Some attempts have been made to make the models
biologically plausible by modifying the learning rule for syn
aptic couplings. Among them are the model of the correla
attractors@16–19# to explain Miyashita and Chang’s exper
ment @20# on performing monkeys in which temporal ord
between patterns of stimuli has been shown to be conve
to spatial correlations between attractors, and also are
model with asymmetric connections for memorizing pres
aptic or postsynaptic activity of neurons@21–23#, or for se-
quence processing@19,24#. Introduction of asymmetry to the
synaptic couplings brings about rich dynamical behaviors
attractor networks including limit cycle and chaotic oscill
tions @19,24–29#.

Since the discovery of oscillatory responses of neuron
stimuli in the physiological experiments on a cat’s visu
cortex @30,31#, oscillatory behaviors of neural activity hav
received the growing interest of researchers, and theore
investigations of associative memory models on oscilla
networks have been performed@32–34#.

Synchronized oscillations in membrane potential or s
chronized firing of neurons observed in physiological expe
ments@30,31# suggest the importance of not only the me
PRE 581063-651X/98/58~3!/3628~12!/$15.00
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firing rate but also the spatiotemporal pattern of neuro
firing based on single firing events in the information pr
cessing of neural networks@35,36#. Synchronized oscilla-
tions have been attracting much attention, because the p
lem of binding the separately processed information
cortical neural networks may happen to be solved by s
cooperative activity of neurons. In this regard, the spike ti
ing in general seems to carry richer and more important
formation than the mean firing rate.

In addition there is some criticism against the assumpt
of mean firing rate for information coding on the groun
that it would not achieve the computational speed of biolo
cal nervous systems@37#. The concept of temporal codin
has been proposed to make good use of firing times as an
variables to represent neuronal information.

Taking the spike timing or firing times of neurons in
account to construct neural networks, one will be led to n
essarily choose spiking neurons as model neurons@38#.

A spiking neuron that is characterized by the thresh
and refractory period originates from the model described
the Hodgkin-Huxley equations@39# representing the dynam
ics of ionic current gated by voltage-dependent chann
Since the equations require four variables to describe
behavior of a single neuron, reducing the number of va
ables to simplify the model has been attempted by FitzHu
@40#, Nagumo and Arimoto@41#, and Rinzel@42# while keep-
ing the essential features of the firing of a neuron given
the Hodgkin-Huxley equations. The FitzHugh neuron is re
resented by a pair of ordinary differential equations as in
Rinzel neuron, which incorporates the representation
clearly identified biophysical quantities. They have the a
vantage of being easily studied by phase plane analy
which makes it convenient to observe the bifurcations
several types of solutions occurring as the parameters
changed. A spiking neuron is often represented by a m
simplified dynamics of the so-called leaky integrate-and-
neuron@43–45#, which consists of a linear differential equa
tion representing relaxational motions of membrane poten
3628 © 1998 The American Physical Society
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PRE 58 3629ASSOCIATIVE MEMORY BASED ON SYNCHRONIZED . . .
and a threshold gadget that only yields a symbolic pu
representing a neuronal firing when the membrane pote
exceeds a threshold. In this case, the refractory perio
either neglected or added to by considering an artificial p
scription.

Associative memory models based on spiking neur
have been studied by several authors@46–48#. Most studies,
however, eventually employ mean firing rates to code n
ronal information.

Gerstneret al. @46# studied a network of a stochastic ve
sion of integrate-and-fire type spiking neurons with discr
time dynamics incorporating synaptic couplings with distr
uted time delays. Conducting numerical simulations th
showed that retrieval of spatiotemporal patterns is poss
and there the mean firing rate coding does not make sen

To our knowledge very few associative memory mod
based on such nonlinear dynamics as that representing
FitzHugh neuron have been proposed for discussing the
age capacity.

The aims of the present paper are~1! to construct an as
sociative memory neural network of spiking neurons t
incorporates the refractory period of a neuron and the t
delay in signal transmission between neurons in a biolo
cally realistic way without deliberately introducing an ove
simplified or abstract representation of the basic propertie
neurons, and then~2! to investigate conditions in terms of th
sizes of the refractory period and time delays and also of
number of stored patterns to ensure memory retrieval acc
panying synchronized firing.

To this end, we choose the FitzHugh neuron as a mo
neuron and assume time-delayed synaptic couplings@49#
with distributed time delays allowed. The analysis of t
network based on the FitzHugh neuron may be straight
wardly extended to cases with more realistic model neur
such as the Rinzel or the Hodgkin-Huxley neuron witho
difficulty. We further introduce a synapse function@50# to
represent the conversion from the firing event of a presyn
tic neuron to the current injected to a postsynaptic neuro

With the assumptions above, we suppose the neuron
the network to work in the following manner. An actio
potential that is generated with the weighted sum of injec
current large enough to exceed a threshold exerts an ex
tory or inhibitory influence after some time delay on
postsynaptic neuron in the form of injecting current who
temporal variation is given by the synapse function.

The main point of this work is to see to what extent t
seemingly complicated model becomes amenable to a s
factory level of analysis.

The present paper is organized as follows. In Sec. II
present the details of the general framework of the mo
construction based on spiking neurons that are represe
by a set of nonlinear differential equations together w
time-delayed synaptic couplings. An autocorrelation ty
learning rule based on random patterns is assumed to d
the synaptic couplings with asymmetry included. In the c
of storing a finite number of patterns we show that the s
lattice method@26,51,52,26,29# mostly works in such a way
that neurons in the same sublattice undergo synchron
firing, and that the reduced dynamics for sublattice variab
are derived even in the presence of distributed time del
Section III is devoted to the description of the results of
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network of the FitzHugh neurons obtained from both n
merical integrations of the reduced dynamics and numer
simulations carried out withN5200. Good agreement be
tween the two results of the existence of retrieval states
hibiting synchronized firing implies the validity of the analy
sis in Sec. II. In Sec. IV we deal with the case of extens
loading. We present the result of numerical simulations
show the phase diagram representing the storage cap
that is quite difficult to evaluate exactly due to the presen
of crosstalk noise. To explain the qualitative behavior of t
storage capacity we conduct an approximate analysis of i
reducing the problem to that of a certain analog netwo
Finally, in Sec. V we give a brief summary and discussio

II. NETWORK MODEL

A. Network of spiking neurons with time-delayed interactions

Model neurons such as the Hodgkin-Huxley one and
FitzHugh one are, in general, modeled by a nonlinear
namics that is described by a set of differential equations
the form

V̇5 f ~V,W1 , . . . ,Wq!, ~1!

Ẇj5gj~V,W1 , . . . ,Wq!, j 51, . . . ,q, ~2!

whereV expresses membrane potential andWj ( j 51,...,q)
are auxiliary variables necessary for a system to exhib
spiking oscillatory behavior. In the case of the FitzHugh ne
ron an example of the dynamics is expressed as

V̇52S V3

3
2V1WD , ~3!

Ẇ5 1
10 ~V11.3!, ~4!

which can esaily be shown to exhibit excitability using pha
plane analysis.

The interactions betweenN neurons comprising a networ
should be expressed by the form of current injection su
that an injection of excitatory electric current makes a neu
fire. The dynamics of a network of many neurons under
influence of these electric currents is written by the equati

V̇i5 f ~Vi ,Wi1 , . . . ,Wiq!1I syn,i~ t !1I ext,i~ t !, ~5!

Ẇi j 5gj~Vi ,Wi1 , . . . ,Wiq!,

i 51, . . . ,N, j 51, . . . ,q, ~6!

where I ext,i(t) denotes an injection of external electric cu
rent, that can be controlled, say, to set initial conditions, a
often done in biological experiments of inserting electrod
and I syn,i(t) denotes an injection of the synaptic curren
contributed from other neurons coupled via synaptic inter
tions.

If the amplitude of the electric currentI i(t)5I syn,i(t)
1I ext,i(t) is large enough to fire a neuron, an action poten
is generated to propagate along the axon. After some ela
time the action potential reaches a postsynaptic neuron
gives rise to an injection of synaptic electric current. To d
scribe the situation mathematically, we define the firing tim
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3630 PRE 58MASAHIKO YOSHIOKA AND MASATOSHI SHIINO
of a neuron as the time when the membrane potential
neuron exceeds a certain valueV0 required for the firing of a
neuron. We note that suchV0 cannot be uniquely deter
mined. In our case it will suffice to setV050 for conve-
nience. We denote the firing time byt i(k), wherek repre-
sentskth firing of neuroni counted from the initial timet
50.

Introducing time delaydi j ( i 51, . . . ,N, j 51, . . . ,N),
which expresses time taken by an action potential of neu
j to reach postsynaptic neuroni, we write the synaptic injec-
tion I syn,i(t) as

I syn,i~ t !5I amp(
j

N

Ji j (
k

Fsyn@ t2t j~k!2di j #, ~7!

where Ji j expresses the strength of synaptic couplings
tween neuronsj and i, I amp is a parameter adjusting ampl
tudes for everyI syn,i(t), and a synapse functionFsyn(t) de-
scribes a temporal change of the injected synaptic elec
current after an arrival of an action potential. In the pres
study, we use the synapse function written in the form@50#

Fsyn~ t !5H 0, t,0

t

ts
2 expS 2

t

ts
D , 0<t,

~8!

wherets is a parameter controlling the shape of the syna
function. Figure 1 shows the shape of the function withts
55. Note that the time integration of the synaptic elect
current per one arrival of an action potential is normalized
be constant for anyts .

The behavior of a system of spiking neurons with int
actions of the form~7!, which is usually called pulse-couple
type, has recently been studied in the case of integrate-
fire neurons@53–56#. There, conditions for synchronizatio
of oscillations are investigated in terms of the parameterts of
the synapse function~8! @54,56#. In our present study spiking
neurons are utilized as elements exhibiting excitability
well as refractoriness and hence we deal with the case w
the interactions~7! and an initial injection of pulsive externa
current for preparing initial firing of neurons are necess
ingredients for a coupled system of spiking neurons to
hibit oscillatory behavior. In other words, without any exte
nal current injection, i.e.,I ext,i(0)50, each neuron remain
to be at the fixed point of the singleV2W dynamics. In that
case time delaysdi j and the refractory period become re

FIG. 1. Shape of the synapse function~8! with ts55.
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evant quantities for determining the dynamical behavior
the system. Such a situation can easily be understood f
system of two coupled FitzHugh neurons. In the Appendix
we present a sketch of the dynamical behavior of that sys
to see the role played by the time delay and the refract
period that is implicitly~though not uniquely! given in the
FitzHugh dynamics.

B. Synaptic couplingsJij for associative memory

Considering random patterns for associative memory,
assume thatP patterns are represented by independent r
dom variablesj i

m ( i 51, . . . ,N, m51, . . . ,P) taking a
quenched value 0 or 1 according to the probability distrib
tion:

P~j i
m!5~12a!d~j i

m!1ad~j i
m21!, ~9!

wherea is the average of thej i
m .

Considering a learning rule to store the memory patter
we note that our model neuron exhibits a peculiar behav
regarding the generation of a spike as the Hodgkin-Hux
neuron does:even an injection of inhibitory electric curren
may bring about a firing of the FitzHugh neuron as shown
Fig. 2. So use of the standard symmetric synaptic couplin
Ji j 5(1/N)(m(j i

m2a)(j j
m2a), which is mostly assumed in

associative memory, turn out to be inappropriate for la
value of I amp from the viewpoint of making the network
biologically plausible. In view of this we assume synap
couplingsJi j to be

Ji j 5
1

N (
m

P

j i
m~j j

m2a!, ~10!

which are asymmetric:Ji j ÞJji .
As can be shown in what follows, the above couplin

ensure memory retrieval based on synchronized firing
neurons.

C. The reduced dynamics describing synchronized firings
in the case of the low loading limit

Although the model network defined in the previous su
section looks a little complicated, synchronized firings e

FIG. 2. Effect of the inhibitary electric current on the firin
behavior of the FitzHugh neuron. The FitzHugh neuron subjecte
an injection of inhibitary electric current can fire with some dela
The same behavior is observed in the case of Hodgkin-Huxley n
rons.
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PRE 58 3631ASSOCIATIVE MEMORY BASED ON SYNCHRONIZED . . .
pected to occur in the low loading limita5P/N50 can be
analyzed rigorously in the limit ofN→`. At first consider
the case when all of the time delaydi j take a single constan
value. In this case we can easily see that dividingN neurons
into 2P sublattices, one knows everything on the netwo
because the dynamics of the system is reduced to the dyn
ics of 2P neurons representing the sublattices, instead oN
dynamics. When initial conditions andI ext,i(t) for neurons in
the same sublattices are same, this scheme is rigorously
rect.

The sublattice method also works even in the case wh
time delaydi j are not constant but they distribute accordi
to a certain probability distributionPd(di j ) with di j taken as
random variables, as is shown below. Although such a tr
ment of di j should be incorrect when considering netwo
topology, we proceed with the above simplification.

Assuming synaptic couplings to be of a more gene
form:

Ji j 5
1

N
J~jW i ,jW j !, ~11!

wherejW i5(j i
1,j i

2,...,j i
P), we will derive the reduced dynam

ics for 2P sublattices. We denote each of 2P sublattices by an
index n (n51,...,2P) and the set of neurons~site! belonging
to sublatticen by I (n). We denote the number of neurons
sublatticen by uI (n)u. The common pattern vectors for su

latticen are denoted byjW (n), and the ratio of the number o
neurons in the sublattice to the total number of neurons
r (n)5uI (n)u/N. Assuming safely that every neuron in th
same sublattice fires at the same timet(n,k) ~note that this
assumption is easily verified after calculating the followi
equation.!, we have

I syn,i~ t !5
I amp

N (
j

J~jW i ,jW j !(
k

Fsyn@ t2t j~k!2di j #

5
I amp

N (
n

(
j PI ~n!

J@jW i ,jW~n!#

3(
k

Fsyn@ t2t~n,k!2di j #

5I amp(
n

r ~n!J@jW i ,jW~n!#(
k

1

uI ~n!u

3 (
j PI ~n!

Fsyn@ t2t~n,k!2di j #

5I amp(
n

r ~n!J@jW i ,jW~n!#(
k

Gsyn@ t2t~n,k!#,

~12!

where

Gsyn~ t !5E
0

`

Pd~t!Fsyn~ t2t!dt. ~13!

Therefore every neuron in the sublatticen shares the com
mon synaptic electric current and this common synaptic e
,
m-

or-

re

t-

l

y

c-

tric current brings about the synchronized firings of neuro
in that sublattice even in the presence of distributed ti
delays.

For convenience, we rewrite Eq.~12! for the common
synaptic electric currentI syn,n(t) in a more concise form:

I syn,n~ t !5I amp(
m

J~n,m!(
k

Gsyn@ t2t~m,k!#, ~14!

where J(n,m)5J@jW (n),jW (m)#r (m). Then one obtains the
reduced dynamics in terms of the sublattice variablesVn and
$Wn j%:

V̇n5 f ~Vn ,Wn1 , . . . ,Wnq!1I syn,n~ t !1I ext,n~ t !, ~15!

Ẇn j5gj~Vn ,Wn1 . . . ,Wnq!,

n51, . . . ,2P, j 51, . . . ,q. ~16!

Given I ext,n(t) together with initial conditions forVn(0) and
$Wn j(0)%, one can solve the set of Eqs.~14!–~16! numeri-
cally to obtain the behavior of the network witha50 in the
limit N→`.

III. ASSOCIATIVE MEMORY IN THE NETWORK
OF THE FITZHUGH NEURONS
AND SYNCHRONIZED FIRINGS

Assuming the synaptic interactions in Eq.~10!, we will
apply the general framework of the reduced dynamics t
network composed of the FitzHugh neurons~3!,~4! to ob-
serve the relationship between memory retrieval and s
chronized firings of neurons. We confine ourselves only
the case of random patterns without bias to seta50.5.

A. Effects of distributed time delays, refractory period, and the
averaged synapse function

To investigate the effect of the time delays and how
averaged synapse function works, we assume, for simplic
a uniform distribution for the time delaysdi j :

Pd~di j !5 H0,
1/Dd,

di j ,d1 ,d2,di j

d1<di j <d2 , ~17!

whereDd5d22d1 .
We consider as an initial condition for the network d

namics that for all neurons (Vi ,$Wi j %) is set to be at the
stable fixed point of Eqs.~5!, ~6! so that they remain quies
cent without an external stimuli. Supposing the pattern 1
be retrieved, we assume an injection of the external elec
current to be given by

I ext,i~ t !5 H1
0

0<t<Dt
t,0,Dt,t ~18!

for pattern 1 neurons~i.e., the neurons withj i
151) and oth-

erwiseI ext,i(t)50, whereDt is a time duration of the curren
injection.Dt should be chosen such that the above inject
of current can excite the pattern 1 neurons. To study un
what conditions such an external injection brings about
ings of pattern 1 neurons immediately and, after that, o
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3632 PRE 58MASAHIKO YOSHIOKA AND MASATOSHI SHIINO
pattern 1 neurons can continue to fire synchronously,
investigate the case with a few number of stored pattern
study the system under the condition described abov
eventually suffices to consider 2 sublattices in the limitN
→`, because(kFsyn@ t2t j (k)2di j # in Eq. ~12! vanishes un-
lessj j

151:

Sublattice 1: j1~1!50, r ~1!50.5,

Sublattice 2: j1~2!51, r ~2!50.5.

FIG. 3. Time evolution of theV variable of sublattice 2 gov-
erned by the reduced dynamics~14!–~16! with the external electric
currentI 2(t)5I syn,2(t)1I ext,2(t) in the case ofd1550, Dd510.

FIG. 4. The result of numerical simulations withN5200, P
53 under the same condition as in Fig. 3~a! The dynamical behav-
ior of a neuron corresponding to sublattice 2 is plotted in the sa
way as in Fig. 3. Even in the case of memorizing an additional
patterns, that give rise to noise in the synaptic electric current
finite N, the theoretical result in Fig. 3 explains the numerical res
well. ~b! The traces of firing of neurons observed in the simulati
Circles represents the time when firing occurs. As discussed in
neurons exhibit synchronized firing in the successful retrieval.
e
o
it
Solving numerically the reduced dynamics with the two su
lattices~14!–~16! with ts55, I amp550, Dt52, we obtain the
dynamical behavior of a neuron of sublattice 2 as shown
Fig. 3 under the conditiond1550, Dd510, where the net-
work succeeds in retrieving the pattern. On the other h
we perform numerical simulations withN5200, P53. We
depict in Fig. 4~a! the result of the neuron withj i

151. The
behavior of the sublattice 2 in Fig. 3 is in good agreem
with the result of numerical simulations in Fig. 4~a!. This
indicates that the use of the averaged synapse function in
~14! is proved to be valid. The expected synchronized firin
are also confirmed to occur as shown by the result of num
cal simulations displayed in Fig. 4~b!, where all traces of
firings of 200 neurons are plotted by circles.

Outside the region of appropriate parameters, the netw
fails in retrieval and every neuron comes back to be sil
again after some time, following the trajectory in theV-W
plane as shown in Fig. 5, which describes one of the typ
behavior of the neuron in unsuccessful retrieval. To obt
the condition for successful retrieval, we examine the beh
ior of the network after a long time under various conditio
on the basis of the reduced dynamics to draw the phase
gram shown in Fig. 6.

In the region 23&Dd the network fails to retrieve the
pattern. This phenomenon agrees with the intuition that
synchronized firings breaks down if the time delays are

e
o
r

lt
.
xt,

FIG. 5. The behavior of sublattice 2 exhibited by reduced d
namics~14!–~16! with d1530, Dd510, where the network fails to
retrieve the pattern because of the effect of refractoriness exhib
by the FitzHugh neuron~3!,~4!.

FIG. 6. Phase diagram on thed1-Dd plane in the case of uni-
formly distributed time delays~17!. The thick line is determined on
the basis of the reduced dynamics, and the thin line is by nume
simulations with N5200 and P53. R represents the retrieva
phase, where the network succeeds in retrieving the pattern.
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tributed too widely. The phenomenon is attributed to t
dull-shaped averaged synapse function with a largeDd as
shown in Fig. 7~a!. To investigate the relation between th
shape of the synapse function and the firing of a neuron,

FIG. 7. Effect of Dd on the dynamical behavior of a singl
neuron. ~a! Shape of the averaged synapse functionGsyn(t) for
variousDd, whend15100. ~b! Trajectories of a neuron subjecte
to an injection of the electric currentI (t)51(120.5)0.5Gsyn(t) are
plotted on theW-V plane. The null clinesW52V3/31V and V
521.3 are drawn as a reference.
he
r
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f
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ow
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e

e

show in Fig. 7~b! the behavior of a single neuron in respon
to an injection of electric currentI (t)50.5(120.5)Gsyn(t)
with variousDd. Although the time integration of the elec
tric current are the same for every case, difference of
shape of the synaptic function due to the differentDd causes
a different behavior after the injection. A largeDd prevents
a neuron from firing and that explains the nonretrieval reg
with largeDd well.

On the other hand, in the region whered1&32, the net-
work also fails to retrieve the stored patterns, because of
effect of the refractory period provided intrinsically in Eq
~3! and ~4!. Like the Hodgkin-Huxley neuron, the FitzHug
neuron cannot fire within a certain time after previous firi
even if there is an additional injection of electric current.
the case of Fig. 5, the time interval between the second
third synaptic injections is so close that the neuron can
fire after the third injection.

B. Dependence of successful retrieval on an initial overlap

As in an associative memory model based on Ising spin
analog neurons, the distance of an initial state from a ta
pattern must be small enough for the network to retrieve
pattern. To measure the distance of a state from the pa
jWm for the network exhibiting repetitive firings, we define a
overlap as

mm~ t !5
1

N

1

a~12a! (
i

~j i
m2a!(

k
exp$2g@ t2t i~k!#%

~19!

with g being appropriately chosen. We consider settingg
50.05 is appropriate.

By applying I ext,i(t) to part of pattern 1 neuron, one ca
prepare an arbitrary size of an initial overlap. We consid
three sublattices:
Sublattice 1: j1~1!50, no external electric current injected,r ~1!50.5,

Sublattice 2: j1~2!51, no external electric current injected,r ~2!50.5~12R!,

Sublattice 3: j1~3!51, an external electric current injected,r ~3!50.5R,
-

b-
e in

n-
p
cal
are

ch
at-
he
whereR is the ratio of the number of injected neurons to t
number of all pattern 1 neurons. Note that the sublattice p
viously taken to classify the total neurons in terms of a se
stored patterns breaks up under the preparation of initial c
ditions described above. However, the reduced dynam
with the three sublattices still remains valid.

Setting all the time delay to be a constant valued (di j
5d i51, . . . ,N, j 51, . . . ,N), we investigate the behavio
of the system after a long time. We show the result in ter
of R-d phase diagram in Fig. 8. The network cannot retrie
the pattern in the regionR&0.3 because the initial size o
overlap is not large enough. In the regiond&35, time delay
is so small that the system fails to retrieve the pattern
cause of the effect of the refractory period. In Fig. 9 we sh
two cases of the time evolution of the overlap observed
e-
f
n-
cs

s
e

-

n

numerical simulations. WhileR50.8 is large enough to con
tinue firings, the network started withR50.2 is seen to rap-
idly settle down to a quiescent state.

In addition to the standard type of retrieval we can o
serve another type of retrieval exhibiting antiphase phas
Fig. 8, where neurons belonging to sublattice 2~neurons free
from the injection of external current!, and those belonging
to sublattice 3~neurons with an external electric current i
jected! fire alternatively in time with smaller size of overla
than that for the standard type of retrieval. The dynami
behavior of neurons exhibiting the antiphase oscillations
depicted in Fig. 10, where~a! is for neurons of sublattice 2
and~b! is for neurons of sublattice 3. The occurrence of su
oscillations is explained as follows. After neurons of subl
tice 3 fire owing to the injection of an external current, t
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action potentials generated are transmitted to the postsy
tic neurons, and then both neurons of sublattice 2 and 3
subjected to a common injection of synaptic electric curre
While neurons of sublattice 2 fire perfectly in response
those injections, neurons of sublattice 3 cannot fire beca
of the effect of the refractory period; in this region the tim
delayd is too short to make the neuron of sublattice 3 fire.
the next updating of firings, neurons of sublattice 2 can
fire in spite of the firing of neurons of sublattice 3. Followin
such a cycle of updating, pattern 1 neurons~sublattice 2 and
sublattice 3! fire alternatively. In Fig. 11~a! we display the
traces of alternative firing obtained in the numerical simu
tions withN5500, and in~b! we show the time evolutions o
overlap corresponding to the firing traces~a!.

IV. CASE WITH THE EXTENSIVE LOADING aÞ0

We will show that when an extensive number of patte
are loaded~i.e., P5aN,aÞ0), the network under consider
ation can retrieve the patterns ifa is below a critical value
ac ~the storage capacity!. For the sake of simplicity we dea
only with the case where time delaydi j is not distributed.
Even with this simplification, a rigorous analysis of the sto
age capacity is rather difficult because the injected syna
electric current for a different neuron takes a different va
owing to the so-called cross-talk noise produced by the
terference among the stored patterns, and hence each n

FIG. 9. Two typical time evolutions of the overlap obtained
numerical simulations withd550,N5500,P53, R50.2,0.8. With
small R, the network fails to continue firing.

FIG. 8. R-d phase diagram, whereR is the ratio of the number
of injected neurons to that of the neurons withj i

151 ~pattern 1 is
the target pattern to be retrieved! andd is a common time delay for
all di j (di j 5d). R represents the retrieval phase, andA represents
the antiphase phase, where the two clusters of neurons appe
and fire alternatively as shown in Fig. 10~see text for details!.
p-
et
t.
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FIG. 10. The result of numerical simulations withR50.5, d
530, P53, N5500. ~a! dynamical behavior of neurons corre
sponding to sublattice 2.~b! The same for sublattice 3. Two neuron
fire alternatively with a constant phase shift of;p.

FIG. 11. ~a! The traces of neuronal firing observed in the sa
simulation as in Fig. 10. Two clusters of neurons corresponding
sublattice 2 and sublattice 3 fire alternatively.~b! The time evolu-
tion of the overlap~19! observed with the traces of neuronal firin
in ~a!.
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has its own firing time as displayed by the result of nume
cal simulations in Fig. 12.

Assuming that every firing neuron emits a spike simul
neously, we can, however, conduct an approximate ana
of the stationary states of the network. It then turns out t
firing of neurons occurs periodically after a long time. T
injection of the synaptic electric current for neuroni is writ-
ten in the form

I syn,i~ t !5I amp(
j

N

Ji j xj(
k

Fsyn~ t2kT!, ~20!

where T denotes the period of the firing, andxi an index
representing activity of a neuron such thatxi51 if neuroni
fires andxi50 otherwise. In view of the nature of the neuro
of the present model, we can assumexi to obey the following
equation:

FIG. 12. The result of numerical simulations withts55, I amp

5100,N5200,a50.04.~a! The traces of firing.~b! The dynamical
behavior of the firing neuron withj i

151 ~pattern 1 is the targe
pattern to be retrieved!. ~c! The same withj i

150. The neuron with
j i

151 fires much faster than that withj i
150, resulting in the simul-

taneous firing att'1830.
-

-
is
t

xi5QS I amp(
j

Ji j xj2u~ ts! D , ~21!

where theQ(h) is the Heaviside function

Q~h!5 H0
1

h<0
0,h ~22!

andu(ts) is a threshold for firing determined by the synap
function with ts . When the time delayd is sufficiently large,
the firing periodT becomes large as well, and the evaluati
of u(ts) can be reduced to a problem of a single body no
linear dynamics in Eqs.~5! and~6!. Since, in this case, ever
neuron is fixed into the fixed point just before the firing,
will suffice to investigate the behavior of a single neur
after an injection of electric current of the form

I syn~ t !5hFsyn~ t !. ~23!

We show the result of evaluating theu(ts) in Fig. 13.
Introducingj̃ i

m52j i
m21 and their averageã52a21 for

Ji j in Eq. ~10!, Eq. ~21! is rewritten as

xi5QX1

N (
m

(
j Þ1

~ j̃ i
m11!~ j̃ j

m2ã!xj2
4u~ ts!

I amp
C. ~24!

Note that we setJii 50. Now the problem is formulated a
finding the fixed point of Eq.~24!, which corresponds to the
Hopfield type network with asymmetric couplings in E
~10!. A method of the SCSNA~self-consistent signal-to
noise analysis! in our previous study@11,12,21,22# is avail-
able for such a problem. In applying the SCSNA to Eq.~24!
the local fields of neuronshi are basic physical quantities. I
the present case the local fieldhi reads

hi5
1

N (
m

(
j Þ1

~ j̃ i
m11!~ j̃ j

m2ã!xj

5~ j̃ i
m11!m11~ ã11!S1

1

N (
m>2

(
j Þ1

~ j̃ i
m2ã!~ j̃ j

m2ã!xj ,

~25!

where

S5 (
m>2

mm ~26!

with

mm5
1

N (
i

~j i
m2ã!xi . ~27!

The S appears as a result of considering asymmetric c
plings in Eq. ~10!, and is a pattern-dependent quantity
O(1) @21,22#. Given a set of patterns,S contributes only a
static field independent of each neuron to the local field a
hence makes the network behavior sample dependent.

The SCSNA equations read
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Y5QX~ j̃11!m1~ ã11!S2
4u~ ts!

I amp
1Aarz1GYC,

~28!

m5^^~ j̃2ã!Y&&, ~29!

UAar 5^^zY&&, ~30!

q5^^Y2&&, ~31!

G5a
~12ã2!2U

12~12ã2!U
, ~32!

r 5
~12ã2!2q

$12~12ã2!U%2 , ~33!

^^ f ~ j̃,z!&&5K 1

A2p
E

2`

`

expS 2
z2

2 D f ~ j̃,z!dzL
j̃

. ~34!

Although the statistical behavior ofS is difficult to treat
rigorously, its probability distribution over various sampl
of patterns may well be approximated to be Gauss
@21,22#. This means that settingS50 in Eq. ~28! gives a
rough estimate of the behavior of the network@21,22#. In
Fig. 14~a! we give the phase diagram obtained by Eqs.~28!–
~33! with S50 and, in Fig. 14~b! we show the phase diagram
obtained by a numerical simulation withN5200. Note that
another numerical simulation with random patterns gen
ated by a different seed for random numbers will give
slightly different result even with a largerN because of the
sample-dependent feature of the network. We see, howe
that the theoretical phase diagram Fig. 14~a! qualitatively
explains the numerical result in Fig. 14~b! except for the
region with large 40&I amp, where the deviation of the nu
merical result from the theoretical one is seen to beco
appreciable. The cause of the deviation can be attribute
the breakdown of the assumption for the simultaneous firi
of neurons withxi51. Indeed the firing time of the firing
neuron distributes to an appreciable extent as shown by
results of the numerical simulations in Fig. 12~a!. The broad
distribution is caused by the fact that the firing neurons w
j i

151 receives much larger synaptic electric current than

FIG. 13. The threshold for firing of a neuron plotted againstts

@refer to Eq.~21!#.
n

r-

er,

e
to
s

he

h
at

with j i
150 and fires faster as shown in Fig. 12~b! and 12~c!.

These fast firings are observed as the simultaneous firing
t'1830 in Fig. 12~a!.

V. DISCUSSION

Assuming a simple learning rule we have studied an
sociative memory neural network of spiking neurons int
acting each other via synaptic couplings with time lags d
to the propagation of an action potential. Whether a neu
fires or not is determined with a set of differential equatio
The time-dependent behavior of synaptic electric curren
described by a synapse function. We have observed tha
network can work as an associative memory based on
chronized firing of neurons not only for the low loading lim
a50 but also for the extensive loadingaÞ0. The time delay
has been found to play a crucial role for the occurrence
synchronized repetitive firings of neurons, which lead
memory retrieval.

The assumption that time delaydi j are independent ran
dom variables obeying a certain probability distribution e
ables one to analytically investigate the time-dependent
havior of the network with the low loading rate by means
the sublattice method. Good agreement between the re
obtained from the reduced dynamics and numerical sim
tions withN5200 or 500 implies the validity of the analysis

Based on the reduced dynamics we have analyzed
stationary state of the network with uniformly distribute
time delay to obtain the retrieval phase. The result has b
summarized into the phase diagram showing the depend
of the appearance of the retrieval states on the parame

FIG. 14. ~a! The phase diagram showing the storage capacity
a function of I amp, which is obtained by Eqs.~28!–~33! with ts

55, ã50, S50. ~b! The corresponding result of numerical simul
tions with N5200. Note that another simulation with a differe
random seed will give another result even withN5` because of
the sample-dependent feature of the network~see text for details!.
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characterizing the distribution ofdi j . Much broad distribu-
tion of time delays makes the averaged synapse function
dull to sustain synchronized firing of neurons as shown
Fig. 7. On the other hand, the network with too short a ti
delay also fails in retrieval because of the effect of the
fractory period implicitly defined in the model neuron.

In the case of the extensive loading the firing times
neurons have been found to distribute as a result of the
pearance of the cross-talk noise. Since the appearanc
such a distribution makes it difficult to rigorously analyze t
statistical behavior of the network, we have to neglect
effect of the distributed firing time to conduct an appro
mate analysis of the storage capacity by means of the
SNA. Although the pattern-dependent random variableSdue
to the asymmetric synaptic couplings considered bri
about the sample-dependent behavior of the network, the
lution of the SCSNA equations~28!–~33! with S50 has
been found to give a rough sketch of the behavior of
network in the case of smallI amp. However, in the case o
large I amp, where the threshold of the transfer function ge
effectively smaller, the influence of the distributed firin
time becomes appreciable to cause the observed differ
between the results of simulations and approximate analy

Our analysis given in the present study is quite simple
spite of the seemingly complicated model. It may be appl
to a wide class of models with the same structure as
present system. For example, the network retrieving s
tiotemporal patterns may also be investigated as long as
learning rule is written as in Eq.~11!. Furthermore, as is
noted earlier, we may easily replace the FitzHugh neur
taken in the present study by the Hodgkin-Huxley neuro
Working with networks based on the Hodgkin-Huxley ne
rons will enable one to incorporate experimental data
tained for biological neurons to get insight into the mech
nisms for information processing of real nervous system

In real nervous systems, synaptic couplings may have
relations with time delaydi j , and such synaptic coupling
may be expected to process spatiotemporal patterns m
efficiently. In that case, assuming for instance,Ji j

5(1/N)J(jW i ,jW j ,di j ), we can proceed in almost the sam
manner as described here to analyze the system under a
priate conditions.

Finally we discuss the implications of the result of t
present study from the viewpoint of biological plausibilit
The occurrence of synchronized firing ensuring memory
trieval in our network is a result of a combined work of th
refractory period of neurons and time delays in signal tra
missions. The period of synchronized repetitive firing is d
termined to be nearly equal to the mean time delay.

We have observed that memory retrieval can be achie
in a very small number of firing pulses, that is, mostly one
two pulses. This implies that the network exhibits efficie
computational speed amounting to that required by real
vous systems to perform such information processing a
visual pattern matching.

In fact, there is an experimental indication that hum
brains perform visual pattern processing in 100 msec thro
10 synaptic stages@57#. Then one can expect that the tim
taken by a neuron to process signals is roughly estimate
be Tp510 msec.

Assuming the propagation velocity of action potentialsv
oo
n
e
-

f
p-
of

e

C-

s
o-

e

s

ce
is.
n
d
e

a-
he

s
s.
-
-
-

r-

re

ro-

-

-
-

d
r
t
r-
a

n
h

to

59 m/s and the average length of axons of excitatory n
ronsr 50.08 m for cortical neurons in the human brain@58#,
one can obtain a rough estimate of axonal delay asd
510 ms. On the other hand, since the firing frequencies
cortical neurons are reported to range from 60 to 200
assuming 100 Hz gives a spike intervalT510 ms, which is
comparable in order of magnitude with the axonal time de
d. Such a quite roughly estimated relationT'd'Tp seems
to be in favor of the result of our study.

A major drawback of our model, however, will be that th
appearance of the retrieval phase is limited only for a sm
value of the relative width of the distribution of time delay
2Dd/(2d11Dd).

It should also be noted that the network of spiking ne
rons for associative memory based on synchronized fir
can be approximately viewed as a kind of the standard Lit
Hopfield model with discrete time synchronized updating d
namics, as has been shown by the approximate treatme
obtaining the storage capacity. In this sense our model se
to serve as a bridge between the two prototype cod
schemes of a neuron. Investigating the problem of how
which of the two schemes of the rate codings and sin
firing events are chosen for use to optimize the compu
tional capability for a particular task and the problem of po
sible interrelations between them, if any, are one of the
ture targets in the direction of our study.
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APPENDIX: BEHAVIOR OF THE PULSE-COUPLED
SYSTEM OF TWO FITZHUGH NEURONS

WITH THE TIME-DELAYED INTERACTION

We study the behavior of the two FitzHugh neuron sy
tem under the pulse-coupled type interaction with time del
Since in the present paper we consider a system of spi
neurons as an input-driven oscillator system, we assume
without any external input the two FitzHugh neuron syste
exhibits no oscillations and each neuron remains at its fi
point. The model equation reads

Vi52S Vi
3

3
2Vi1Wi D 1I syn,i~ t !1I ext,i~ t !, ~A1!

Wi5
1

10
~Vi11.3!, i 51,2, ~A2!

whereI syn,i(t) describes the time-delayed interaction due
an injection of synaptic electric current@in Eq. ~7! set N
52, J125J2151, J115J2250# andI ext,i(t) denotes an injec-
tion of external electric current.

We confine ourselves to investigating qualitative dynam
cal behaviors with a special type of initial condition an
preparation of an initial external current injection that a
used in the study of our associative memory model. Th
are, for instance, given by
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I ext,i~ t !5cz id~ t !, z i50 or 1, ~A3!

Vi~02!5Veq, ~A4!

Wi~02!5Weq, i 51,2, ~A5!

wherec is a constant and (Veq,Weq) denotes the stable fixe
point of the FitzHugh neuron dynamics@Eqs.~3! and ~4!#.

We have substantially two cases according to the num
of neurons subjected to the initial injection of pulsive ext
nal current for firing.

First, let us assume that only one neuron, say neuro
receives an initial input current to fire at timet50. After
time delayd21 a synaptic electric current~SEC! is induced at
the postsynaptic neuron 2 due to the propagated action
tential via the interaction between the two neurons. Un
the assumption that the magnitude of the SEC is la
enough to evoke a spiked firing of the FitzHugh dynami
there occurs firing of neuron 2 almost at timed21, if any
time delay involved in the transformation from the SEC
the generation of an action potential is negligibly small. T
firing of neuron 2 in turn brings about that of neuron 1 af
another time delayd12. Repeating this process, neurons
and 2 can continue to fire alternatively, ifd121d21 is larger
than the refractory period implicitly given in the FitzHug
dynamics. Then the system exhibits periodic oscillatio
with periodd121d21. Figure 15 shows a schematic diagra
for a series of firing times of the neurons, which we den
by L1 , following the initial injection of input current to neu
ron 1 at timet50.

Next, let both of the neurons be forced to fire simul
neously by an initially injected current. One might expect,
following the same reasoning as above, that there appea
superposition of the two firing time seriesL1 andL2 that are
generated following the initial injection to neurons 1 and

FIG. 15. Schematic diagram representing a series of firing tim
L1 of neurons that starts from the initial firing of neuron 1 due to
injection of external current.
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respectively. This holds true only under a restricted condit
that bothd12 and d21 be sufficiently large, because of th
refractoriness of the FitzHugh dynamics. To see the r
played by the refractoriness we will suffice to consider t
case whered21 is small enough to satisfy the condition th
the effective refractory period of the FitzHugh dynamics
larger thand21. Then, neuron 2 is prevented from firing to
soon, that is, after the time delayd21 from the initial firing
due to the injected current. Then the seriesL1 turns out to die
afterward. OnlyL2 can survive in this case.

To summarize the behavior of the two neurons eventu
observed for a long time, one has three types of behavior~1!
Neither L1 nor L2 is allowed to exist and both neurons g
quiescent;~2! only one series ofL1 andL2 can survive.~3!
both L1 andL2 can exist. In the case of 2 and 3, the syste
exhibits synchronized periodic oscillations, though not
ways of in-phase type. We show in Fig. 16 a typical sch
matic phase diagram on thed12-d21 plane displaying the ap
pearance of the three types of behavior that are obta
from the result of numerical integrations of the coupl
FitzHugh dynamics, Eqs.~A1!, ~A2!, in the case of two neu-
rons with an initial current injection. As far as the stationa
property attained for a long time is concerned, the schem
phase diagram depicts a qualitative dynamical behavio
the two-neuron-coupled system. We note, however, t
there can occur the case where the time taken during
process of transformation from the SEC to an action pot
tial at a postsynaptic neuron cannot be neglected and ex
an influence on a transient behavior of the system.

s

FIG. 16. Schematic phase diagram on thed12-d21 plane display-
ing each regime of the three types of firing behavior 1~#0!, 2 ~#1!,
3 ~#2! ~see text! in the case where both neurons are subjected
initial firings. The phase diagrams is drawn based on the resu
numerical integrations of Eqs.~A1! and ~A2! for ts55, I amp520.
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