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We study associative memory of a neural network of spiking neurons with time-delayed synaptic interac-
tions incorporating the time taken by an action potential to propagate along the axon. Individual spiking
neurons are described by a set of nonlinear differential equations capable of exhibiting excitability such as that
of Hodgkin-Huxley and FitzHugh neurons. When a simple learning rule of the autocorrelation type based on
random patterns is assumed, memory retrieval is shown to be accompanied by synchronized firing of neurons.
The reduced dynamics with a few degrees of freedom of the network with a finite number of stored patterns is
analytically derived in the limit of infinitely many neurons. The dependence of the appearance of retrieval
states on the distribution of time delay and on the size of refractory period given implicitly in the model is
obtained, showing good agreement between the result of numerical simulations and that obtained from the
reduced dynamics. The behavior of the network with an extensive number of patterns is also investigated and
an approximate analysis is presented to discuss the storage cafatdg3-651%98)09009-9

PACS numbdss): 87.10+e

[. INTRODUCTION firing rate but also the spatiotemporal pattern of neuronal
firing based on single firing events in the information pro-
Since Hopfield’s work[1] extensive studies have been cessing of neural networki35,36. Synchronized oscilla-
conducted on neural networks of associative memory bylions have been attracting much attention, because the prob-
means of statistical mechanical theory of spin glagg8ed0] lem of binding the separately processed information in
and some alternatives of fil1-15. Model neurons have cortical neural networks may happen to be solved by such
been mostly taken to be of Ising spin type or of analog neuooperative activity of neurons. In this regard, the spike tim-
ron type. They represent states of neuronal activity of firing"d in general seems to carry richer and more important in-
and resting for Ising spin neurons, and a graded response gi'mation than the mean firing rate. _ _
the mean firing rate for analog neurons. Memory retrieval In add|t!qn there is some criticism against the assumption
based on such neurons is expressed as a dynamical flow 5 mean firing rate for information co_dmg on the grqund§
one of fixed point type attractors generated corresponding t at it would not achieve the computational speed of biologi-

: . cal nervous system37]. The concept of temporal coding
the stored patterns in a network thgt has a.Lyapunov functio as been proposed to make good use of firing times as analog
as a result of assuming symmetric couplings between ney;

rons ariables to represent neuronal information.

Taking the spike timing or firing times of neurons into
Some attempts have been made to make the models Mofe ., nt to construct neural networks, one will be led to nec-

bio!ogically_ plausible by modifying the learning rule for syn- essarily choose spiking neurons as model neuf8@k
aptic couplings. Among them are the model of the correlated A gpiking neuron that is characterized by the threshold
attractor§16—19 to explain Miyashita and Chang'’s experi- and refractory period originates from the model described by
ment[20] on performing monkeys in which temporal order the Hodgkin-Huxley equation89] representing the dynam-
between patterns of stimuli has been shown to be converteids of ionic current gated by voltage-dependent channels.
to spatial correlations between attractors, and also are th@ince the equations require four variables to describe the
model with asymmetric connections for memorizing presyn-behavior of a single neuron, reducing the number of vari-
aptic or postsynaptic activity of neurofigl-23, or for se-  ables to simplify the model has been attempted by FitzHugh
qguence processind.9,24). Introduction of asymmetry to the [40], Nagumo and Arimot§41], and Rinze[42] while keep-
synaptic couplings brings about rich dynamical behaviors ofng the essential features of the firing of a neuron given by
attractor networks including limit cycle and chaotic oscilla- the Hodgkin-Huxley equations. The FitzHugh neuron is rep-
tions[19,24-29. resented by a pair of ordinary differential equations as in the
Since the discovery of oscillatory responses of neurons t&®inzel neuron, which incorporates the representation of
stimuli in the physiological experiments on a cat’s visualclearly identified biophysical quantities. They have the ad-
cortex[30,31], oscillatory behaviors of neural activity have vantage of being easily studied by phase plane analysis,
received the growing interest of researchers, and theoreticalhich makes it convenient to observe the bifurcations of
investigations of associative memory models on oscillatoseveral types of solutions occurring as the parameters are
networks have been performga2—34. changed. A spiking neuron is often represented by a much
Synchronized oscillations in membrane potential or synsimplified dynamics of the so-called leaky integrate-and-fire
chronized firing of neurons observed in physiological experi-neuron[43—45, which consists of a linear differential equa-
ments[30,31] suggest the importance of not only the meantion representing relaxational motions of membrane potential
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and a threshold gadget that only yields a symbolic pulseetwork of the FitzHugh neurons obtained from both nu-
representing a neuronal firing when the membrane potentiaherical integrations of the reduced dynamics and numerical
exceeds a threshold. In this case, the refractory period isimulations carried out wittN=200. Good agreement be-
either neglected or added to by considering an artificial pretween the two results of the existence of retrieval states ex-
scription. hibiting synchronized firing implies the validity of the analy-
Associative memory models based on spiking neuron§is in Sec. Il In Sec. IV we deal with the case of extensive
have been studied by several auth@ré—48. Most studies, 10ading. We present the result of numerical simulations to
however, eventually employ mean firing rates to code neuShow the phase diagram representing the storage capacity
ronal information. that is quite difficult to evaluate exactly due to the presence
Gerstneret al. [46] studied a network of a stochastic ver- of crosstalk nqise. To explain the qualit_ative behaviqr of _the
sion of integrate-and-fire type spiking neurons with discrete>l°rage capacity we conduct an approximate analysis of it by

time dynamics incorporating synaptic couplings with distrib- rgducmg the problem to that .Of a certain analog network.
uted time delays. Conducting numerical simulations thef'na"y’ in Sec. V we give a brief summary and discussion.
showed that retrieval of spatiotemporal patterns is possible
and there the mean firing rate coding does not make sense. Il. NETWORK MODEL

To our knowledge very few associative memory models o' Network of spiking neurons with time-delayed interactions
based on such nonlinear dynamics as that representing the

FitzHugh neuron have been proposed for discussing the stor- Model neurons such as the Hodgkin-Huxley one and the
age capacity. FitzHugh one are, in general, modeled by a nonlinear dy-

The aims of the present paper df@ to construct an as- namics that is described by a set of differential equations of

sociative memory neural network of spiking neurons thath€ form
incorporates the refractory period of a neuron and the time

delay in signal transmission between neurons in a biologi- V=EV.W, - W), @)
cally realistic way without deliberately introducing an over- . .
simplified or abstract representation of the basic properties of Wi=gi(V.\Wy, ... W), j=1....4, )

neurons, and thef®) to investigate conditions in terms of the whereV expresses membrane potential anl (j=1,...q)
sizes of the refractory period and time delays and also of th(gtre auxiliary variables necessary for a system to exhibit a

number of stored patterns to ensure memory retrieval accomMy,iving oscillatory behavior. In the case of the FitzHugh neu-

panying synchronized firing. ron an example of the dynamics is expressed as
To this end, we choose the FitzZHugh neuron as a model

neuron and assume time-delayed synaptic couplid$s . V3

with distributed time delays allowed. The analysis of the V=—(§—V+W , (©)
network based on the FitzHugh neuron may be straightfor-

wardly extended to cases with more realistic model neurons W=4(V+1.3), @)

such as the Rinzel or the Hodgkin-Huxley neuron without

difficulty. We further introduce a synapse functi¢f0] to  which can esaily be shown to exhibit excitability using phase

represent the conversion from the firing event of a presynaplane analysis.

tic neuron to the current injected to a postsynaptic neuron.  The interactions betwees neurons comprising a network
With the assumptions above, we suppose the neurons ghould be expressed by the form of current injection such

the network to work in the following manner. An action that an injection of excitatory electric current makes a neuron

potential that is generated with the weighted sum of injectedire, The dynamics of a network of many neurons under the

current large enough to exceed a threshold exerts an excitgrfluence of these electric currents is written by the equations
tory or inhibitory influence after some time delay on a

postsynaptic neuron in the form of injecting current whose Vi=f(Vi,Wig, .. Wig) +1gynj (1) + e (D), 6)
temporal variation is given by the synapse function.
The main point of this work is to see to what extent the \)\/ij =0;(Vi Wi, ... W),
seemingly complicated model becomes amenable to a satis-
factory level of analysis. i=1,...N, j=1,...q, (6)

The present paper is organized as follows. In Sec. Il we
present the details of the general framework of the modelvherel,;(t) denotes an injection of external electric cur-
construction based on spiking neurons that are representeent, that can be controlled, say, to set initial conditions, as is
by a set of nonlinear differential equations together withoften done in biological experiments of inserting electrodes,
time-delayed synaptic couplings. An autocorrelation typeand lg,;(t) denotes an injection of the synaptic currents
learning rule based on random patterns is assumed to defimentributed from other neurons coupled via synaptic interac-
the synaptic couplings with asymmetry included. In the casdions.
of storing a finite number of patterns we show that the sub- If the amplitude of the electric currerf(t) =1gy,;(t)
lattice method 26,51,52,26,2Pmostly works in such a way +1,(t) is large enough to fire a neuron, an action potential
that neurons in the same sublattice undergo synchronizeid generated to propagate along the axon. After some elapsed
firing, and that the reduced dynamics for sublattice variablesime the action potential reaches a postsynaptic neuron and
are derived even in the presence of distributed time delaygives rise to an injection of synaptic electric current. To de-
Section Il is devoted to the description of the results of thescribe the situation mathematically, we define the firing time
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FIG. 1. Shape of the synapse functi® with t,=>5. FIG. 2. Effect of the inhibitary electric current on the firing
behavior of the FitzHugh neuron. The FitzHugh neuron subjected to
an injection of inhibitary electric current can fire with some delay.
The same behavior is observed in the case of Hodgkin-Huxley neu-
rons.

of a neuron as the time when the membrane potential of
neuron exceeds a certain valMg required for the firing of a
neuron. We note that suct, cannot be uniquely deter-
mined. In our case it will suffice to s&f,=0 for conve-
nience. We denote the firing time lyk), wherek repre-
sentskth firing of neuroni counted from the initial time
=0.

Introducing time delayd;; (i=1,... N, j=1,...N),
which expresses time taken by an action potential of neuro
j to reach postsynaptic neurdornwe write the synaptic injec-
tion I (t) as

evant quantities for determining the dynamical behavior of
the system. Such a situation can easily be understood for a
system of two coupled FitzHugh neurons. In the Appendix A
we present a sketch of the dynamical behavior of that system
to see the role played by the time delay and the refractory
Beriod that is implicitly(though not uniquelygiven in the
FitzHugh dynamics.

N B. Synaptic couplingsJ;; for associative memory
'syn,i(t):'amp; Jij; Fod t=t;(k)—djj], () Considering random patterns for associative memory, we
assume thaP patterns are represented by independent ran-
where J;; expresses the strength of synaptic couplings bedom variables£f® (i=1,... N, p=1,...P) taking a

tween neurong andi, |, is a parameter adjusting ampli- quenched value 0 or 1 according to the probability distribu-
tudes for everyl gn;(t), and a synapse functidhg(t) de- ~ tion:
scribes a temporal change of the injected synaptic electric
current after an arrival of an action potential. In the present
study, we use the synapse function written in the &0

P(&)=(1—a)o(&f) +as(éf—1), (€)

wherea is the average of thé/*.

0, t<0 Considering a learning rule to store the memory patterns,

we note that our model neuron exhibits a peculiar behavior

Fot)=13 t ex;{ B i) o<t (8 regarding the generation of a spike as the Hodgkin-Huxley
t_f tg)’ ' neuron doeseven an injection of inhibitory electric current

may bring about a firing of the FitzHugh neuron as shown in

wherets is a parameter controlling the shape of the synaps€&ig. 2. So use of the standard symmetric synaptic couplings
function. Figure 1 shows the shape of the function with  J;;=(1/N)Z (& —a)(&—a), which is mostly assumed in
=5. Note that the time integration of the synaptic electricassociative memory, turn out to be inappropriate for large
current per one arrival of an action potential is normalized tovalue of I ,,, from the viewpoint of making the network
be constant for any;. biologically plausible. In view of this we assume synaptic

The behavior of a system of spiking neurons with inter-couplingsJ;; to be
actions of the form7), which is usually called pulse-coupled
type, has recently been studied in the case of integrate-and- 1 r
fire neurong53-56. There, conditions for synchronization Ji=y > g(&-a), (10
of oscillations are investigated in terms of the paramitef K’
the synapse functio(8) [54,56. In our present study spiking which are asymmetricl; #J.; .
neurons are utilized as elements exhibiting excitability as As can be shown inJ that follows, the above couplings

. . A : CEhsure memory retrieval based on synchronized firing of
the interaction$7) and an initial injection of pulsive external neurons

current for preparing initial firing of neurons are necessary
ingredients for a coupled system of spiking neurons to ex-
hibit oscillatory behavior. In other words, without any exter-
nal current injection, i.e.lei(0)=0, each neuron remains
to be at the fixed point of the sing\é— W dynamics. In that Although the model network defined in the previous sub-
case time delaysl;; and the refractory period become rel- section looks a little complicated, synchronized firings ex-

C. The reduced dynamics describing synchronized firings
in the case of the low loading limit
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pected to occur in the low loading limi¢=P/N=0 can be tric current brings about the synchronized firings of neurons
analyzed rigorously in the limit oN—. At first consider in that sublattice even in the presence of distributed time
the case when all of the time deldy, take a single constant delays.
value. In this case we can easily see that dividihngeurons For convenience, we rewrite Eql2) for the common
into 2P sublattices, one knows everything on the network,synaptic electric currerity, ,(t) in @ more concise form:
becausg the dynamics of the system is reduced to the dynam-
ics of 2" neurons representing the sublattices, insteatll of _ _
dynamics. When initial conditions ang,;(t) for neurons in Isy”’”(t)_lamp% J(n,m); Coplt-tmi]. (19
the same sublattices are same, this scheme is rigorously cor-
rect. where J(n,m)=J[ &(n),&(m)]r(m). Then one obtains the
The sublattice method also works even in the case whergeduced dynamics in terms of the sublattice variaMgsnd
time delayd;; are not constant but they distribute according{wnj};
to a certain probability distributioRy(d;;) with d;; taken as )
random variables, as is shown below. Although such a treat- Vi=f(Vq,Wh1, ... Whg) +lgynn(t) +lexin(t), (15
ment of d;; should be incorrect when considering network .
topology, we procee_d with th_e above simplification. Wii=0;(Va Wy ... Way),
Assuming synaptic couplings to be of a more general
form: n=1,....%, j=1,... 9. (16)

3. :E J(E- 5-) (11) Givenl g (1) together with initial conditions fo¥,(0) and
NN TR {W,;(0)}, one can solve the set of Eqd.4)—(16) numeri-
cally to obtain the behavior of the network with=0 in the
whereg; = (&1, £2,...,£7), we will derive the reduced dynam- limit N—co.
ics for 2P sublattices. We denote each df 8ublattices by an

indexn (n=1,...,%) and the set of neuror(site) belonging Ill. ASSOCIATIVE MEMORY IN THE NETWORK
to sublatticen by I (n). We denote the number of neurons in OF THE FITZHUGH NEURONS
sublatticen by [I(n)|. The common pattern vectors for sub- AND SYNCHRONIZED FIRINGS

lattice n are denoted bﬁ(n), and the ratio of the number of Assuming the synaptic interactions in EA.0), we will

neurons in the sublattice to the total number of neurons bﬁpply the general framework of the reduced dynamics to a

r(n)=[I(nM|/N. Assuming safely that every neuron in the onyork composed of the FitzHugh neurof8,(4) to ob-
same sublattice fires at the same titje,k) (note that this  gape the relationship between memory retrieval and syn-

assumption is easily verified after calculating the following cpronized firings of neurons. We confine ourselves only to
equation), we have the case of random patterns without bias toase®.5.

la

lgyni (D)= Nmp E J(é?i ,EJ)E Fodt—t;(k)—d;] A. Effects of distributed time delays, refrac_tory period, and the
J k averaged synapse function
| amp - - To investigate the effect of the time delays and how the
N = J.;(n) L&, &(n)] averaged synapse function works, we assume, for simplicity,
a uniform distribution for the time delayd; :
x; Feydt—t(n,k)—d;] B (di)= 0, d;; <d;,dy<d; a7
(@)= 1ad,  dy<d;=<d,,
.. 1
=lamp2, 1(MIELEMIX [y whereAd=d,—d;.
n K We consider as an initial condition for the network dy-
namics that for all neuronsV(,{W;;}) is set to be at the
X 2 Fsyd t—t(n,k) —dj;] stable fixed point of Eq95), (6) so that they remain quies-
Jel(n) cent without an external stimuli. Supposing the pattern 1 to
. be retrieved, we assume an injection of the external electric
=lamp F(MILE,EM] Gepdt=t(nK], current to be given by
12 |1 OstsAt
lext,i(t)_ 0 t<O,At<t (18)
where
for pattern 1 neuronf.e., the neurons witt&ilzl) and oth-
n=| p o (t— _ 1 erwisel o (t) =0, whereAt is a time duration of the current
Gyt fo a(P)Fsyft=mdr (13 injection. At should be chosen such that the above injection

of current can excite the pattern 1 neurons. To study under
Therefore every neuron in the sublattineshares the com- what conditions such an external injection brings about fir-
mon synaptic electric current and this common synaptic elecings of pattern 1 neurons immediately and, after that, only
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FIG. 3. Time evolution of the/ variable of sublattice 2 gov- FIG. 5. The behavior of sublattice 2 exhibited by reduced dy-
erned by the reduced dynamigis4)—(16) with the external electric  hamics(14)—(16) with d; =30, Ad= 10, where the network fails to
currentl ,(t) =1l gyn A1) + e A1) in the case ofl;=50, Ad=10. retrieve the pattern because of the effect of refractoriness exhibited

by the FitzHugh neuroi3),(4).
pattern 1 neurons can continue to fire synchronously, we
investigate the case with a few number of stored pattern. T&olving numerically the reduced dynamics with the two sub-
study the system under the condition described above iattices(14)—(16) with ty=5, | amg= 50, At=2, we obtain the
eventually suffices to consider 2 sublattices in the liMit gynamical behavior of a neuron of sublattice 2 as shown in
—00, lbecausélszyr[t—t,—(k)—Olij] in Eq.(12) vanishes un-  Fig. 3 under the condition; =50, Ad= 10, where the net-
less&;=1: work succeeds in retrieving the pattern. On the other hand
we perform numerical simulations with=200, P=3. We
Sublattice 1: ¢41)=0, r(1)=0.5, depict in Fig. 4a) the result of the neuron wit'=1. The
behavior of the sublattice 2 in Fig. 3 is in good agreement
with the result of numerical simulations in Fig(ad. This
indicates that the use of the averaged synapse function in Eq.
(14) is proved to be valid. The expected synchronized firings

Sublattice 2: £4(2)=1, r(2)=0.5.

@ - - - ' are also confirmed to occur as shown by the result of numeri-
[ cal simulations displayed in Fig.(d), where all traces of
firings of 200 neurons are plotted by circles.
S Outside the region of appropriate parameters, the network
g fails in retrieval and every neuron comes back to be silent
il again after some time, following the trajectory in tkieW
= plane as shown in Fig. 5, which describes one of the typical
behavior of the neuron in unsuccessful retrieval. To obtain
the condition for successful retrieval, we examine the behav-
. . . ‘ ior of the network after a long time under various conditions
0 100 200 X 300 400 500 on the basis of the reduced dynamics to draw the phase dia-
gram shown in Fig. 6.
(b) 200 ; - - In the region 23 Ad the network fails to retrieve the
180 § 1 pattern. This phenomenon agrees with the intuition that the
<§ Eg i synchronized firings breaks down if the time delays are dis
S ® ® 53 e 53
2 120 § H § 3 8 3 30
5 100
8 80 [
3 e
£ 40 B 20+
zg | | | 3
0 100 200 t 300 400 500 10
FIG. 4. The result of numerical simulations with=200, P
_:3 under the same conditi_on asin Figa_)BThe_dynamica_I behav- 00 20 40 60 80 100
ior of a neuron corresponding to sublattice 2 is plotted in the same d,

way as in Fig. 3. Even in the case of memorizing an additional two

patterns, that give rise to noise in the synaptic electric current for FIG. 6. Phase diagram on tlig-Ad plane in the case of uni-
finite N, the theoretical result in Fig. 3 explains the numerical resultformly distributed time delay§l7). The thick line is determined on
well. (b) The traces of firing of neurons observed in the simulation.the basis of the reduced dynamics, and the thin line is by numerical
Circles represents the time when firing occurs. As discussed in texgimulations withN=200 and P=3. R represents the retrieval
neurons exhibit synchronized firing in the successful retrieval.  phase, where the network succeeds in retrieving the pattern.
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(a) 0.07 . . , . show in Fig. Tb) the behavior of a single neuron in response
to an injection of electric currenit(t) =0.5(1—0.5)Ggy(t)
with variousAd. Although the time integration of the elec-
tric current are the same for every case, difference of the
shape of the synaptic function due to the differaAit causes
a different behavior after the injection. A larged prevents
a neuron from firing and that explains the nonretrieval region
with large Ad well.
On the other hand, in the region whette<32, the net-
. S work also fails to retrieve the stored patterns, because of the
80 100 120 140 160 180 effect of the refractory period provided intrinsically in Egs.
t (3) and (4). Like the Hodgkin-Huxley neuron, the FitzHugh
®) T . . . neuron cannot fire within a certain time after previous firing
even if there is an additional injection of electric current. In
the case of Fig. 5, the time interval between the second and
third synaptic injections is so close that the neuron cannot
fire after the third injection.

0.06 -
0.05 r
0.04
0.03
0.02 r
0.01

Gsyn (t)

B. Dependence of successful retrieval on an initial overlap

As in an associative memory model based on Ising spin or
analog neurons, the distance of an initial state from a target
pattern must be small enough for the network to retrieve the
pattern. To measure the distance of a state from the pattern
&* for the network exhibiting repetitive firings, we define an
overlap as

FIG. 7. Effect of Ad on the dynamical behavior of a single
neuron.(a) Shape of the averaged synapse funct®g,(t) for
variousAd, whend;=100. (b) Trajectories of a neuron subjected 1 1
to an injection of the electric currehft) =1(1—0.5)0.554,(t) are m(t)= = ——— E (gi”—a)E exp —y[t—t;(k) ]}
plotted on thew-V plane. The null clinedv=—V3/3+V andV Na(l-a) 5 K
=—1.3 are drawn as a reference. (19

with y being appropriately chosen. We consider setting
tributed too widely. The phenomenon is attributed to the=0.05 is appropriate.
dull-shaped averaged synapse function with a lakgeas By applyingl.i(t) to part of pattern 1 neuron, one can
shown in Fig. 7a). To investigate the relation between the prepare an arbitrary size of an initial overlap. We consider
shape of the synapse function and the firing of a neuron, wéhree sublattices:

Sublattice 1: £(1)=0, no external electric current injectedy(1)=0.5,
Sublattice 2: £(2)=1, no external electric current injected(2)=0.51—R),

Sublattice 3: £4(3)=1, an external electric current injected(3)=0.5R,

whereR is the ratio of the number of injected neurons to thenumerical simulations. Whil&=0.8 is large enough to con-
number of all pattern 1 neurons. Note that the sublattice pretinue firings, the network started wifR=0.2 is seen to rap-
viously taken to classify the total neurons in terms of a set ofdly settle down to a quiescent state.

stored patterns breaks up under the preparation of initial con- In addition to the standard type of retrieval we can ob-
ditions described above. However, the reduced dynamicserve another type of retrieval exhibiting antiphase phase in

with the three sublattices still remains valid. Fig. 8, where neurons belonging to sublatticen@urons free
Setting all the time delay to be a constant vatig¢d;; from the injection of external currentand those belonging
=di=1,... N, j=1,... N), we investigate the behavior to sublattice 3neurons with an external electric current in-

of the system after a long time. We show the result in termgected fire alternatively in time with smaller size of overlap
of R-d phase diagram in Fig. 8. The network cannot retrievethan that for the standard type of retrieval. The dynamical
the pattern in the regioR=<0.3 because the initial size of behavior of neurons exhibiting the antiphase oscillations are
overlap is not large enough. In the regid 35, time delay  depicted in Fig. 10, wheré) is for neurons of sublattice 2

is so small that the system fails to retrieve the pattern beand(b) is for neurons of sublattice 3. The occurrence of such
cause of the effect of the refractory period. In Fig. 9 we showoscillations is explained as follows. After neurons of sublat-
two cases of the time evolution of the overlap observed irtice 3 fire owing to the injection of an external current, the



3634

50
40 R
301
20|

10+

0

0 02 04 06 08 1
R

FIG. 8. R-d phase diagram, wheiR is the ratio of the number
of injected neurons to that of the neurons vvgfh: 1 (pattern 1 is
the target pattern to be retrieyeahdd is a common time delay for
all d;; (djj=d). R represents the retrieval phase, adepresents
the antiphase phase, where the two clusters of neurons appear to
and fire alternatively as shown in Fig. 1€ee text for detai)s

action potentials generated are transmitted to the postsynap-
tic neurons, and then both neurons of sublattice 2 and 3 get
subjected to a common injection of synaptic electric current.
While neurons of sublattice 2 fire perfectly in response to
those injections, neurons of sublattice 3 cannot fire because
of the effect of the refractory period; in this region the time
delayd is too short to make the neuron of sublattice 3 fire. At
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400
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FIG. 10. The result of numerical simulations wik=0.5, d

the next updating of firings, neurons of sublattice 2 cannof=30: P=3, N=500. (&) dynamical behavior of neurons corre-
fire in spite of the firing of neurons of sublattice 3. Following SPonding to sublattice Zb) The same for sublattice 3. Two neurons

such a cycle of updating, pattern 1 neurg¢sgblattice 2 and
sublattice 3 fire alternatively. In Fig. 1(a) we display the
traces of alternative firing obtained in the numerical simula-
tions withN=500, and in(b) we show the time evolutions of
overlap corresponding to the firing traces.

IV. CASE WITH THE EXTENSIVE LOADING a#0

We will show that when an extensive number of patterns
are loadedi.e., P=aN,a#0), the network under consider-
ation can retrieve the patternsdfis below a critical value
a. (the storage capacityFor the sake of simplicity we deal
only with the case where time delad; is not distributed.
Even with this simplification, a rigorous analysis of the stor-
age capacity is rather difficult because the injected synaptic
electric current for a different neuron takes a different value
owing to the so-called cross-talk noise produced by the in-
terference among the stored patterns, and hence each neuron
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FIG. 11. (a) The traces of neuronal firing observed in the same

simulation as in Fig. 10. Two clusters of neurons corresponding to
FIG. 9. Two typical time evolutions of the overlap obtained in sublattice 2 and sublattice 3 fire alternativelly) The time evolu-

numerical simulations witkd=50,N=500,P=3, R=0.2,0.8. With
small R, the network fails to continue firing.

tion of the overlap(19) observed with the traces of neuronal firing
in (a).
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(a) 200 goe0
180 | ie; @( lamp Jij%j— a(ts)), (21)
@ 160 f ' )
c °
e 140 &5, . o .
3 120 % o where the® (h) is the Heaviside function
5 100t %? s
3 80 r .o 0 h=o0
.§ 60 00‘9 ®(h):{l 0<h (22)
= 40 ¢ B
20 . .i%?% . . and 4(t,) is a threshold for firing determined by the synaptic
?800 1820 1840 1860 1880 1900 function withts. When the time delag is sufficiently large,
t the firing periodT becomes large as well, and the evaluation

o) ' ' . . of 6(ts) can be reduced to a problem of a single body non-

linear dynamics in Eqg5) and(6). Since, in this case, every
neuron is fixed into the fixed point just before the firing, it
will suffice to investigate the behavior of a single neuron
after an injection of electric current of the form

I(t) and V
o)

lsyr(t) =hFg(1). (23

"""""""""""""" We show the result of evaluating tiits) in Fig. 13.
Introducing&*=2¢— 1 and their averaga=_2a—1 for

Jij in Eq. (10), Eq. (21) is rewritten as

1840 1860
t

1800 1820 1880 1900

(s)

amp

© 2 2 (& + 1) (8 —3)x;—

(24)

Note that we sef;; =0. Now the problem is formulated as
finding the fixed point of Eq(24), which corresponds to the
Hopfield type network with asymmetric couplings in Eq.
(10). A method of the SCSNA(self-consistent signal-to-

| noise analysisin our previous study11,12,21,22 is avail-
Pyl ] able for such a problem. In applying the SCSNA to E2f)
the local fields of neuronis; are basic physical quantities. In
the present case the local fidid reads

I(t) and V
o

-1t

1800 1820 1840 . 1860 1880 1900

FIG. 12. The result of numerical simulations witf=5, 1 ,mp
=100,N=200,2=0.04.(a) The traces of firing(b) The dynamical i
behavior of the firing neuron witl§i1=1 (pattern 1 is the target
pattern to be retrieved(c) The same Witr§i1=0. The neuron with
&'=1 fires much faster than that witif=0, resulting in the simul-

taneous firing at~1830.

1 ~ ~u o~
=N 2 2 (E+1E -3
noj#l

(&3 (& -3,

1
=(&+1)mt+(a+1)S —2
N u=2 j#1

(25)

has its own firing time as displayed by the result of humeri-
cal simulations in Fig. 12. where

Assuming that every firing neuron emits a spike simulta-
neously, we can, however, conduct an approximate analysis
of the stationary states of the network. It then turns out that
firing of neurons occurs periodically after a long time. The
injection of the synaptic electric current for neurois writ-
ten in the form

(26)
with

1 ~
=N 2 (&% (27)

N
lyni (O =Tamps 3% 2 Folt=KT), (20
The S appears as a result of considering asymmetric cou-
where T denotes the period of the firing, ang an index plings in Eqg.(10), and is a pattern-dependent quantity of
representing activity of a neuron such thxat 1 if neuroni 0(1) [21,22. Given a set of patterns§ contributes only a
fires andx; =0 otherwise. In view of the nature of the neuron static field independent of each neuron to the local field and
of the present model, we can assuxpéo obey the following hence makes the network behavior sample dependent.

equation: The SCSNA equations read
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FIG. 13. The threshold for firing of a neuron plotted against
[refer to Eq.(2D)]. 0.08-
40(t) 0.06
~ - o
Y=0|(&+m+(@E+1)S— — > +\arz+TY), 0.044
amp
(28 0.02 R
—({(¢-73 0 R —
m <<(§ a)Y>>' (29 0 20 40 60 80 100
amp
Uvar={(zY)), 30
\/a_ {20 (30 FIG. 14. (a) The phase diagram showing the storage capacity as
) a function of I, which is obtained by Eqsi28)—(33) with tg
a=Y)), (31 =5,2=0, S=0. (b) The corresponding result of numerical simula-
tions with N=200. Note that another simulation with a different
(1-3%»%u random seed will give another result even witl+ because of
I'=a m, (32 the sample-dependent feature of the netw(de text for details
9.5 with £'=0 and fires faster as shown in Fig.(b2and 1Zc).
(1-a%)°q - . A
M=y, (33)  These fast firings are observed as the simultaneous firings at
{1-(1-a")U} t~1830 in Fig. 12a).
> 1 [ 2\~ V. DISCUSSION
{(f(&,2))= \/? exp — f(¢,z)dz K (39 ‘
e 3 Assuming a simple learning rule we have studied an as-

sociative memory neural network of spiking neurons inter-

Although the statistical behavior @ is difficult to treat  acting each other via synaptic couplings with time lags due
rigorously, its probability distribution over various samplesto the propagation of an action potential. Whether a neuron
of patterns may well be approximated to be Gaussiarires or not is determined with a set of differential equations.
[21,22. This means that settin§=0 in Eq. (28) gives a The time-dependent behavior of synaptic electric current is
rough estimate of the behavior of the netwd&1,22. In  described by a synapse function. We have observed that the
Fig. 14a we give the phase diagram obtained by H@8)—  network can work as an associative memory based on syn-
(33) with S=0 and, in Fig. 14b) we show the phase diagram chronized firing of neurons not only for the low loading limit
obtained by a numerical simulation with=200. Note that «=0 but also for the extensive loading# 0. The time delay
another numerical simulation with random patterns generhas been found to play a crucial role for the occurrence of
ated by a different seed for random numbers will give asynchronized repetitive firings of neurons, which lead to
slightly different result even with a largét because of the memory retrieval.
sample-dependent feature of the network. We see, however, The assumption that time delaly; are independent ran-
that the theoretical phase diagram Fig.(@4qualitatively  dom variables obeying a certain probability distribution en-
explains the numerical result in Fig. (0} except for the ables one to analytically investigate the time-dependent be-
region with large 4€1 ., where the deviation of the nu- havior of the network with the low loading rate by means of
merical result from the theoretical one is seen to becomehe sublattice method. Good agreement between the results
appreciable. The cause of the deviation can be attributed tobtained from the reduced dynamics and numerical simula-
the breakdown of the assumption for the simultaneous firingsions withN= 200 or 500 implies the validity of the analysis.
of neurons withx;=1. Indeed the firing time of the firing Based on the reduced dynamics we have analyzed the
neuron distributes to an appreciable extent as shown by thstationary state of the network with uniformly distributed
results of the numerical simulations in Fig.(&2 The broad time delay to obtain the retrieval phase. The result has been
distribution is caused by the fact that the firing neurons withsummarized into the phase diagram showing the dependence
&=1 receives much larger synaptic electric current than thaof the appearance of the retrieval states on the parameters
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characterizing the distribution af;; . Much broad distribu- =9 m/s and the average length of axons of excitatory neu-
tion of time delays makes the averaged synapse function tomnsr=0.08 m for cortical neurons in the human brg&8],
dull to sustain synchronized firing of neurons as shown irone can obtain a rough estimate of axonal delaydas
Fig. 7. On the other hand, the network with too short a time=10 ms. On the other hand, since the firing frequencies of
delay also fails in retrieval because of the effect of the recortical neurons are reported to range from 60 to 200 Hz,
fractory period implicitly defined in the model neuron. assuming 100 Hz gives a spike interviad= 10 ms, which is
In the case of the extensive loading the firing times ofcomparable in order of magnitude with the axonal time delay
neurons have been found to distribute as a result of the agt Such a quite roughly estimated relatidr-d~T, seems
pearance of the cross-talk noise. Since the appearance wf be in favor of the result of our study.
such a distribution makes it difficult to rigorously analyze the A major drawback of our model, however, will be that the
statistical behavior of the network, we have to neglect theappearance of the retrieval phase is limited only for a small
effect of the distributed firing time to conduct an approxi- value of the relative width of the distribution of time delays
mate analysis of the storage capacity by means of the SGAd/(2d,+Ad).
SNA. Although the pattern-dependent random vari&gdizie It should also be noted that the network of spiking neu-
to the asymmetric synaptic couplings considered bringsons for associative memory based on synchronized firing
about the sample-dependent behavior of the network, the sgan be approximately viewed as a kind of the standard Little-
lution of the SCSNA equation$28)—(33) with S=0 has Hopfield model with discrete time synchronized updating dy-
been found to give a rough sketch of the behavior of thenamics, as has been shown by the approximate treatment of
network in the case of small,,,,. However, in the case of obtaining the storage capacity. In this sense our model seems
large | ;mp, Where the threshold of the transfer function getsto serve as a bridge between the two prototype coding
effectively smaller, the influence of the distributed firing schemes of a neuron. Investigating the problem of how and
time becomes appreciable to cause the observed differengeéhich of the two schemes of the rate codings and single
between the results of simulations and approximate analysiéiring events are chosen for use to optimize the computa-
Our analysis given in the present study is quite simple intional capability for a particular task and the problem of pos-
spite of the seemingly complicated model. It may be appliedsible interrelations between them, if any, are one of the fu-
to a wide class of models with the same structure as théure targets in the direction of our study.
present system. For example, the network retrieving spa-
tiotemporal patterns may also be investigated as long as the ACKNOWLEDGMENT
learning rule is written as in EqA1). Furthermore, as is
noted earlier, we may easily replace the FitzHugh neurons One of the authoréM.Y.) would like to acknowledge the
taken in the present study by the Hodgkin-Huxley neuronssupport from a Grant-in-Aid for Encouragement of Young
Working with networks based on the Hodgkin-Huxley neu- Scientists(Grant No. 4415 from the Ministry of Education.
rons will enable one to incorporate experimental data ob-

ta}lned ffor_b:cologmal neurons to ge]E |nS||ght into the mecha- APPENDIX: BEHAVIOR OF THE PULSE-COUPLED
nisms for information processing of real nervous systems. SYSTEM OF TWO EITZHUGH NEURONS

In. real nervous systems, synaptic coupllngs_may haye cor- WITH THE TIME-DELAYED INTERACTION
relations with time delayd;;, and such synaptic couplings
may be expected to process spatiotemporal patterns more We study the behavior of the two FitzHugh neuron sys-
efficiently. In that case, assuming for instancé, tem under the pulse-coupled type interaction with time delay.

= (1N)J(& £ .d;j), we can proceed in almost the same Since in the present paper we consider a system of spiking

manner as described here to analyze the system under appR§2Urons as an input-driven oscillator_system, we assume that
priate conditions. without any external input the two FitzHugh neuron system

Finally we discuss the implications of the result of the €xhibits no oscillations and each neuron remains at its fixed

present study from the viewpoint of biological plausibility. Point. The model equation reads
The occurrence of synchronized firing ensuring memory re-
trieval in our network is a result of a combined work of the Vi3
refractory period of neurons and time delays in signal trans- Vi=-— 3 Vit W
missions. The period of synchronized repetitive firing is de-
termined to be nearly equal to the mean time delay. 1
We have observed that memory retrieval can be achieved = (V. =
in a very small number of firing pulses, that is, mostly one or W 10 (Vi+l3, 1=12 (A2)
two pulses. This implies that the network exhibits efficient
computational speed amounting to that required by real newherel ,;(t) describes the time-delayed interaction due to
vous systems to perform such information processing as an injection of synaptic electric currefin Eq. (7) setN
visual pattern matching. =2,J1,=351=1, J1;=J,,=0] andl o;(t) denotes an injec-
In fact, there is an experimental indication that humantion of external electric current.
brains perform visual pattern processing in 100 msec through We confine ourselves to investigating qualitative dynami-
10 synaptic stageb7]. Then one can expect that the time cal behaviors with a special type of initial condition and
taken by a neuron to process signals is roughly estimated toreparation of an initial external current injection that are
be T,=10 msec. used in the study of our associative memory model. They
Assuming the propagation velocity of action potentials are, for instance, given by

+|syn,i(t)+|ext,i(t)a (Al)
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FIG. 15. Schematic diagram representing a series of firing times 0 . . | .
L, of neurons that starts from the initial firing of neuron 1 due to an 0 10 20 30 40 50
injection of external current. 2
FIG. 16. Schematic phase diagram on the d,, plane display-
lexii(t)=cgi6(t), ¢=0 or 1, (A3)  ing each regime of the three types of firing behavig#@), 2 (#1),
3 (#2) (see text in the case where both neurons are subjected to
Vi(o—):Veqv (A4) initial firings. The phase diagrams is drawn based on the result of

numerical integrations of Eq$Al) and(A2) for t;=5, | ;= 20.
Wi(0_)=W,q, =12, (A5) o

wherec is a constant andVe,, Weg denotes the stable fixed respectively. This holds true only under a restricted condition
point of the FitzHugh neuron dynami¢ggs. (3) and (4)]. that bothd,, and d; be sufficiently large, because of the
We have substantially two cases according to the numbeefractoriness of the FitzHugh dynamics. To see the role
of neurons subjected to the initial injection of pulsive exter-played by the refractoriness we will suffice to consider the
nal current for firing. case wheral,, is small enough to satisfy the condition that
First, let us assume that only one neuron, say neuron 1he effective refractory period of the FitzHugh dynamics be
receives an initial input current to fire at tinte=0. After  larger thand,;. Then, neuron 2 is prevented from firing too
time delayd,,; a synaptic electric curredSEQ is induced at  soon, that is, after the time delal, from the initial firing
the postsynaptic neuron 2 due to the propagated action palue to the injected current. Then the setigdurns out to die
tential via the interaction between the two neurons. Undeafterward. OnlyL, can survive in this case.
the assumption that the magnitude of the SEC is large To summarize the behavior of the two neurons eventually
enough to evoke a spiked firing of the FitzHugh dynamics,observed for a long time, one has three types of behaidpr:
there occurs firing of neuron 2 almost at tirdeg;, if any  NeitherL; nor L, is allowed to exist and both neurons get
time delay involved in the transformation from the SEC toquiescent(2) only one series of; andL, can survive(3)
the generation of an action potential is negligibly small. ThebothL; andL, can exist. In the case of 2 and 3, the system
firing of neuron 2 in turn brings about that of neuron 1 afterexhibits synchronized periodic oscillations, though not al-
another time delayl;,. Repeating this process, neurons lways of in-phase type. We show in Fig. 16 a typical sche-
and 2 can continue to fire alternatively,df,+d,, is larger  matic phase diagram on tlg,-d,; plane displaying the ap-
than the refractory period implicitly given in the FitzHugh pearance of the three types of behavior that are obtained
dynamics. Then the system exhibits periodic oscillationfrom the result of numerical integrations of the coupled
with periodd,+d,;. Figure 15 shows a schematic diagram FitzHugh dynamics, Eqs$Al), (A2), in the case of two neu-
for a series of firing times of the neurons, which we denoterons with an initial current injection. As far as the stationary
by L,, following the initial injection of input current to neu- property attained for a long time is concerned, the schematic
ron 1 at timet=0. phase diagram depicts a qualitative dynamical behavior of
Next, let both of the neurons be forced to fire simulta-the two-neuron-coupled system. We note, however, that
neously by an initially injected current. One might expect, bythere can occur the case where the time taken during the
following the same reasoning as above, that there appearspaocess of transformation from the SEC to an action poten-
superposition of the two firing time serieég andL, that are tial at a postsynaptic neuron cannot be neglected and exerts
generated following the initial injection to neurons 1 and 2,an influence on a transient behavior of the system.
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